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Abstract

The singular stress and electric ®elds in a rectangular piezoelectric ceramic body containing a Gri�th center crack
under anti-plane shear loading are obtained by the theory of linear piezoelectricity. Fourier transforms and Fourier

sine series are used to reduce the problem to a pair of dual integral equations, which is expressed to a Fredholm
integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are
obtained to show the in¯uence of the electric ®eld. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric ceramic materials are used widely owing to their high piezoelectric performance, but the

inherent weakness of piezoelectric ceramics is its brittleness. Severe mechanical stress occurs in use. The

stress concentrations under mechanical and electric loads may cause crack initiation and propagation.

To improve the performance and to predict the reliable service lifetime of ceramic piezoelectric

components, it is necessary to analyze theoretically the damage and fracture processes taking place in

piezoelectric materials with consideration of the coupled e�ects of mechanics and electrics. The study in

fracture mechanics of piezoelectric ceramics has been paid more attention to in recent years. Deeg

(1980) and Pak (1990) addressed the plane and anti-plane fracture problems of an in®nite piezoelectric

body and obtained the closed form solutions of stress ®eld and electric displacement near the crack tip.

With the aid of the three-dimensional eigenfunction expansion method, Sosa and Pak (1990)
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investigated the in®nite body with the straight crack front located along the transversely isotropic axis
of symmetry and they discussed the in¯uence of electric ®elds to the stress ®eld near the crack tip. Sosa
(1991) suggested a general method of solving plane problems of piezoelectric media with defects.
Recently, Park and Sun (1995) obtained the closed form solutions for all three modes of fracture for an
in®nite piezoelectric medium containing a center crack subjected to a combined mechanical and electric
loading. Pak (1992) suggested the closed form solution for an in®nite piezoelectric body under anti-plane
loading by employing a complex variable approach. Also Shindo et al. (1996, 1997) obtained the
solution of the in®nite strip parallel or perpendicular to the crack under anti-plane loading using
integral transform method.

In this paper, we apply the theory of linear piezoelectricity to the electroelastic problem of a center
crack in a rectangular piezoelectric ceramics under anti-plane shear loading. Fourier cosine transforms
and Fourier sine series are used to obtain a pair of dual integral equations, which is then expressed into
a Fredholm integral equation of the second kind. Numerical results for the stress intensity factor and
the energy release rate are shown graphically for various piezoelectric ceramics.

2. Problem statements and method of solution

Consider a piezoelectric body in the form of a rectangular sheet containing a center crack subjected to
mechanical and electrical loads as shown in Fig. 1. We will consider four possible cases of boundary
conditions at the edges of the rectangular sheet. The piezoelectric material with the poling axis z
occupies the region �ÿbRxRb, ÿ hRyRh), and is thick enough in the z-direction to allow a state of
anti-plane shear. The crack is located at the center �ÿaRxRa, y � 0). Because of the assumed symmetry
in geometry and loading, it is su�cient to consider the problem for 0RxRb, 0RyRh only.

The piezoelectric boundary value problem is simpli®ed considerably if we consider only the out-of-
plane displacement and the in-plane electric ®elds in the forms

ux � uy � 0, uz � w�x, y�, Ex � Ex�x, y�, Ey � Ey�x, y�, Ez � 0: �1�

Fig. 1. Rectangular piezoelectric body with a center crack subjected to in-plane electric loads and anti-plane mechanical loads.

S.M. Kwon, K.Y. Lee / International Journal of Solids and Structures 37 (2000) 4859±48694860



where ui and Ei �i � x, y, z� are the displacement and electric ®eld vectors, respectively. In this case the
constitutive relations become

txz � c44
@w

@x
� e15

@f
@x

, tyz � c44
@w

@y
� e15

@f
@y

, �2�

Dx � e15
@w

@x
ÿ d11

@f
@x

, Dy � e15
@w

@y
ÿ d11

@f
@y

, �3�

where tkz, Dk, �k � x, y), c44, d11, e15 and f are the stress tensor, the electric displacement vector, the
elastic modulus measured in a constant electric ®eld, the dielectric permittivity measured at a constant
strain, the piezoelectric constant and the electric potential, respectively. The governing equations are
simpli®ed to

c44r 2w� e15r 2f � 0,

e15r 2wÿ d11r 2f � 0: �4�
where r 2�@ 2=@x 2�@ 2=@y2 is the two-dimensional Laplacian operator in the variables x and y.

The boundary conditions are written as

tyz�x, 0� � 0, �0Rx < a�,
w�x, 0� � 0, �a < xRb�, �5�

txz�b, y� � 0, �0RyRh�,
Dx�b, y� � 0, �0RyRh�, �6�

Ex�x, 0� � E c
x�x, 0�, �0Rx < a�,

f�x, 0� � 0, �a < xRb�, �7�

where the superscript c represents the electric quantities in the crack. There may be the four cases of
combined electric and mechanical loadings as follows:

Case 1: tyz�x, h� � t0 and Dy�x, h� � D0, �8�

Case 2: gyz�x, h� � g0 and Ey�x, h� � E0, �9�

Case 3: tyz�x, h� � t0 and Ey�x, h� � E0, �10�

Case 4: gyz�x, h� � g0 and Dy�x, h� � D0, �11�
where t0, D0, g0 and E0 are uniform applied shear traction, uniform applied electric displacement,
uniform applied shear strain and uniform applied electric ®eld, respectively. The solutions of the
displacement component w�x, y� and the electric potential f�x, y� for Eq. (4) are given in terms of the
following Fourier cosine transform and Fourier sine series (Chang, 1985):

w�x, y� � 2

p

�1
0

A1�s�
cosh

�
s�hÿ y��

cosh�sh� cos�sx� ds�
X1
n�0

B1�n�cosh
ÿ
bnx=h

�
sin
ÿ
bny=h

�� a0y, �12�
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f�x, y� � 2

p

�1
0

A2�s�
cosh

�
s�hÿ y��

cosh�sh� cos�sx� ds�
X1
n�0

B2�n�cosh
ÿ
bnx=h

�
sin
ÿ
bny=h

�ÿ b0y, �13�

where Ai�s�, Bi�n� �i � 1, 2� are the unknowns to be solved, a0 and b0 are real constants which are
determined from the edge loading conditions, and bn � �2n� 1�p=2:

The corresponding stress and electric displacement components may be obtained with the aid of Eqs.
(2) and (3):

txz�x, y� � ÿ2

p

�1
0

s
�
c44A1�s� � e15A2�s�

�cosh
�
s�hÿ y��

cosh�sh� sin�sx� ds

�
X1
n�0

bn
h

�
c44B1�n� � e15B2�n�

�
sinh

ÿ
bnx=h

�
sin
ÿ
bny=h

�
,

�14a�

tyz�x, y� � ÿ2p
�1
0

s
�
c44A1�s� � e15A2�s�

�sinh
�
s�hÿ y��

cosh�sh� cos�sx� ds

�
X1
n�0

bn
h

�
c44B1�n� � e15B2�n�

�
cosh

ÿ
bnx=h

�
cos
ÿ
bny=h

�� c0,

�14b�

Dx�x, y� � ÿ2

p

�1
0

s
�
e15A1�s� ÿ d11A2�s�

�cosh
�
s�hÿ y��

cosh�sh� sin�sx� ds

�
X1
n�0

bn
h

�
e15B1�n� ÿ d11B2�n�

�
sinh

ÿ
bnx=h

�
sin
ÿ
bny=h

�
,

�15a�

Dy�x, y� � ÿ2p
�1
0

s
�
e15A1�s� ÿ d11A2�s�

�sinh
�
s�hÿ y��

cosh�sh� cos�sx� ds

�
X1
n�0

bn
h

�
e15B1�n� ÿ d11B2�n�

�
cosh

ÿ
bnx=h

�
cos
ÿ
bny=h

�� d0,

�15b�

where

c0 � c44a0 ÿ e15b0, d0 � e15a0 � d11b0: �16�
By applying the edge loading conditions at y � h, the constants a0 and b0 are evaluated as follows:

Case 1: a0 � d11t0 � e15D0

c44d11 � e215
� t0

me
� D0

ee
, b0 � c44D0 ÿ e15t0

c44d11 � e215
� D0

de
ÿ t0

ee
, �17�

Case 2: a0 � g0, b0 � E0, �18�

Case 3: a0 � t0 � e15E0

c44
, b0 � E0, �19�

Case 4: a0 � g0, b0 � D0 ÿ e15g0
d11

, �20�
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where de, me and ee are the e�ective dielectric permittivity, e�ective shear modulus and e�ective
piezoelectric constant of the material, respectively, which are given as follows (Zhang and Hack, 1992;
Zhang and Tong, 1996),

de � d11 � e215=c44, me � c44 � e215=d11, ee � e15 � c44d11=e15: �21�
Introducing Eqs. (14a) and (15a) into Eq. (6), we have the following relations,

Bk�n� � 4

ph � sinh
ÿ
bnb=h

� �1
0

s

s2 � ÿbn=h� 2Ak�s�sin�sb� ds, �k � 1, 2�: �22�

Substituting Eqs. (12) and (14b) into Eq. (5) and using the facts that the unknowns A2�s� � B2�n� � 0
which are obtained from Eq. (7), a pair of dual integral equations is obtained,�1

0

sA1�s�tanh�sh�cos�sx� dsÿ p
2

X1
n�0

bn
h
B1�n�cosh

�
bnx
h

�
� p

2

c0
c44

, 0Rx < a,�1
0

A1�s�cos�sx� ds � 0, a < xRb:

�23�

Let

A1�s� �
�a
0

x0�x�J0�sx� dx, �24�

where J0�sx� stands for the zero order Bessel function of the ®rst kind.
Inserting Eq. (24) into Eq. (23) and considering Eq. (22), we can ®nd that the auxiliary function 0�x�

is given by a Fredholm integral equation of the second kind in the form,

0�x� �
�a
0

0�Z�
�
K1�x, Z� ÿ K2�x, Z�

�
dZ � p

2

c0
c44

, �25�

where

K1�x, Z� � Z
�1
0

s
�
tanh�sh� ÿ 1

�
J0�sx�J0�sZ� ds, �26�

K2�x,Z� � Z
X1
n�0

p
ÿ
bn=h

�
eÿbnb=h

h � sinh
ÿ
bnb=h

�I0ÿbnx=h�I0ÿbnZ=h�, �27�

and I0�� � �� denotes the modi®ed zero order Bessel function of the ®rst kind.
We introduce the following dimensionless variables and functions for numerical analysis;

s � S=a, x � aX, Z � aH, ~h � a=h, ~b � a=b,

0�x� � p
2

c0
c44

O�X�����
X
p , 0�Z� � p

2

c0
c44

O�H�����
H
p :

�28�

Substituting Eq. (28) into Eq. (25), we can obtain a Fredholm integral equation of the second kind in
the form,

O�X� �
�1
0

O�H��L1�X, H� ÿ L2�X, H�
�

dH �
����
X
p

, �29�
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where

L1�X,H� �
��������
XH
p �1

0

S
�
tanh

ÿ
S= ~h

�
ÿ 1

�
J0�SX�J0�SH� ds, �30�

L2�X, H� �
��������
XH
p X1

n�0

pbn ~h
2
eÿbn ~h= ~b

sinh

�
bn ~h= ~b

� I0�bn ~hX
�
I0

�
bn ~hH

�

�
��������
XH
p X1

n�0
pbn ~h

2
h
coth

�
bn ~h= ~b

�
ÿ 1

i
I0

�
bn ~hX

�
I0

�
bn ~hH

�
: �31�

In view of practical applications, O�1� values may be approximately expressed by convenient polynomial
form using the iterative scheme, that is

O�1� � 1� 0:2056 ~h
2 ÿ 0:0909 ~h

4 �
X1
n�0

eÿbn ~h= ~b

sinh

�
bn ~h= ~b

��2:4674 ~h
3
n� 1:0146 ~h

4
n� 2:2930 ~h

4
n3
�

�
X1
m�0

X1
n�0

eÿ�bm�bn� ~h= ~b

sinh

�
bm ~h= ~b

�
sinh

�
bn ~h= ~b

�6:088 ~h
4
mn�O

�
~h
6
�
: �32�

3. Intensity factors and energy release rate

The mode III stress intensity factor, KIII is de®ned and determined in the form,

KIII � lim
x4a�

��������������������
2p�xÿ a�

p
tyz�x, 0� � c0

������
pa
p

O�1�: �33�

Extending the traditional concept of stress intensity factors to other ®eld variables, we have

gxz � ÿ
K g�������
2pr
p sin

�
y
2

�
, gyz �

K g�������
2pr
p cos

�
y
2

�
,

Ex � ÿ K E�������
2pr
p sin

�
y
2

�
, Eg � K E�������

2pr
p cos

�
y
2

�
,

txz � ÿ K s�������
2pr
p sin

�
y
2

�
, tyz � K s�������

2pr
p cos

�
y
2

�
,

Dx � ÿ K D�������
2pr
p sin

�
y
2

�
, Dy � K D�������

2pr
p cos

�
y
2

�
,

�34�

where K g is the strain intensity factor, K E is the electric ®eld intensity factor, K s is the stress intensity
factor and K D is the electric displacement intensity factor. These ®eld intensity factors are de®ned as

K g � lim
x4a�

��������������������
2p�xÿ a�

p
gyz�x, 0� �

KIII

c44
� c0

c44

������
pa
p

O�1�,

K E � lim
x4a�

��������������������
2p�xÿ a�

p
Ey�x, 0� � 0,
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K s � lim
x4a�

��������������������
2p�xÿ a�

p
tyz�x, 0� � KIII � c0

������
pa
p

O�1�,

K D � lim
x4a�

��������������������
2p�xÿ a�

p
Dy�x, 0� � e15

c44
KIII � e15c0

c44

������
pa
p

O�1�: �35�

Evaluating the energy release rate G for the anti-plane case obtained by Pak (1990) on vanishingly small
contour at a crack tip, we obtain

G � K gK s

2
� K 2

III

2c44
� pa

2c44
c20O

2�1�: �36�

Equation (36) shows that the energy release rate are positive, which was well referred to by Gao et al.
(1997). The energy release rate is only determined by the applied stress. This is agreed with the results of
Zhang and Tong (1996) and Gao et al. (1997). From Eq. (36), we obtain the energy release rates for
four possible boundary conditions

Case 1: G � pa
2c44

t20O
2�1�, �37�

Case 2: G � pa
2c44
�c44g0 ÿ e15E0�2O2�1�, �38�

Case 3: G � pa
2c44

t20O
2�1�, �39�

Case 4: G � pa
2c44

�
meg0 ÿ

e15D0

d11

�2

O 2�1�: �40�

From Eqs. (37)±(40), it is noted that the energy release rates are dependent on the electric loading only
under constant strain loading and independent on it under constant stress loading. These are agreed
with Zhang and Tong (1996).

Since O�1�41 from Eq. (29) as b41 and h41, the energy release rate G1 for an in®nite
piezoelectric ceramic can be obtained from Eqs. (37)±(40) as

G1 � pa
2c44

c20 : �41�

Equation (41) is also agreed with Zhang and Hack (1992) and Zhang and Tong (1996).

4. Discussions

The solution of an in®nite piezoelectric strip containing a central crack parallel to the strip edges
�b41 or ~b40� can be derived from Eqs. (29)±(31) by using the result

lim
~b40

24 eÿbn ~h= ~b

sinh

�
bn ~h= ~b

�35 � 0: �42�

In this case, the function O�1� is governed by

O�X� �
�1
0

O�H�L1�X, H� dH �
����
X
p

, �43�
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because the function L2�X, H � represented by the Eq. (31) is obviouly vanished, Eq. (43) is the same as
the result of Shindo et al. (1997).

Letting h41� ~h40� in Eqs. (29)±(31), and considering

lim
~h40

�
tanh

ÿ
S= ~h

�
ÿ 1

�
� 0, �44�

and assuming lim
~h40
�p ~h� � dS; b ~h � S, the solution of a piezoelectric strip with a central crack

perpendicular to its edges may be also obtained from Eq. (29) in the forms:

O�X� �
�1
0

O�H�L3�X,H� dH �
����
X
p

, �45�

where

L3�X, H� � ÿ
��������
XH
p �1

0

SeÿS= ~b

sinh
ÿ
S= ~b

�I0�SX�I0�SH� dS
�

��������
XH
p �1

0

S
�
1ÿ coth

ÿ
S= ~b

��
I0�SX�I0�SH� dS, �46�

Eqs. (45) and (46) are also identical to the result of Shindo et al. (1996).
To examine the e�ect of electromechanical interactions on the stress intensity factor and the energy

release rate, Eq. (29) was computed numerically by the use of Gaussian quadrature formulas. We
consider PZT-6B, BaTiO3 and PZT-5H ceramics, and the material properties are listed in Table 1.

Figures 2 and 3 display the variation of the normalized stress intensity factor ~KIII � KIII=c0
������
pa
p

and
energy release rate G=G1 against normalized sample lengths ~h � a=h and ~b � a=b with ®xed ~b and ~h
values, respectively. From these results, we can ®nd that the normalized stress intensity factor ~KIII and
energy release rate G=G1 increase as ~b and ~h values increase at ®xed ~h and ~b, respectively. Especially,
the e�ects of normalized sample width ~b on the stress intensity factor and energy release rate are greater
than those of normalized sample height ~h:

Figures 4 and 5 show the variation of the normalized energy release rate G=Gcr against E0 and D0,
respectively. In cases 2 and 4, the minimum normalized energy release rate G=Gcr can exist with the
variation of electrical load but has always positive values.

Table 1

Material properties of piezoelectric ceramics (Shindo et al., 1997)

Material properties Symbol Unit Piezoceramics

PZT-6B BaTiO3 PZT-5H

Elastic sti�ness c44 � 1010 N/m2 2.71 4.3 3.53

Piezoelectric constants e15 C/m2 4.6 11.6 17.0

Dielectric permittivity d11 � 10ÿ10 F/m 36.0 112.0 151.0

Critical energy release rate Gcr J/m2 5.0 4.0 5.0
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Fig. 2. Normalized stress intensity factor ~KIII and energy release rate G=G1 vs. normalized sample height ~h:

Fig. 3. Normalized stress intensity factor ~KIII and energy release rate G=G1 vs. normalized sample width ~b:
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Fig. 4. Normalized energy release rate of piezoelectric ceramics (Case 2).

Fig. 5. Normalized energy release rate of piezoelectric ceramics (Case 4).
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5. Conclusions

The electroelastic problem of a central crack in a rectangular transversely isotropic piezoelectric
ceramic under anti-plane shear was analyzed by the integral transform approach. The traditional
concept of linear elastic fracture mechanics is extended to include the piezoelectric e�ects. The results
are expressed in terms of the stress intensity factor and the energy release rate. The following
conclusions are obtained:

1. The energy release rate are dependent on the electric loading only under constant strain loading and
independent of it under constant stress loading.

2. The normalized stress intensity factor and the normalized energy release rate increase when the
normalized sample lengths ~h and ~b are increased.

3. The e�ects of normalized sample width ~b on the stress intensity factor and energy release rate are
greater than those of normalized sample height ~h:

4. In constant strain loadings, the minimum normalized energy release rate G=Gcr can exist with the
variation of electrical load but has always positive values.
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